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Despite the ecological importance of long-distance dispersal in insects,
its mechanistic basis is poorly understood in genetic model species, in
which advanced molecular tools are readily available. One critical
question is how insects interact with the wind to detect attractive
odor plumes and increase their travel distance as they disperse. To
gain insight into dispersal, we conducted release-and-recapture ex-
periments in the Mojave Desert using the fruit fly, Drosophila mela-
nogaster. We deployed chemically baited traps in a 1 km radius ring
around the release site, equipped with cameras that captured the
arrival times of flies as they landed. In each experiment, we re-
leased between 30,000 and 200,000 flies. By repeating the exper-
iments under a variety of conditions, we were able to quantify the
influence of wind on flies’ dispersal behavior. Our results confirm
that even tiny fruit flies could disperse ∼12 km in a single flight in
still air and might travel many times that distance in a moderate
wind. The dispersal behavior of the flies is well explained by an
agent-based model in which animals maintain a fixed body orien-
tation relative to celestial cues, actively regulate groundspeed along
their body axis, and allow the wind to advect them sideways. The
model accounts for the observation that flies actively fan out in all
directions in still air but are increasingly advected downwind as
winds intensify. Our results suggest that dispersing insects may
strike a balance between the need to cover large distances while
still maintaining the chance of intercepting odor plumes from
upwind sources.
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If asked to picture a migrating insect, the first image that comes
to mind might be a large charismatic species such as the mon-

arch butterfly, whose seasonal movements across North America
have inspired naturalists for centuries. However, as pointed out by
David and Elizabeth Lack (1), our impression of insect migration
is strongly biased toward large animals; many species are so small
that their geographic relocations escape our attention, especially if
their population densities are not strongly concentrated by geo-
logical features such as narrow mountain passes. As research using
high-altitude traps (2) and upward-looking radar (3, 4) indicates,
long-distance migration may be more ubiquitous and ecologically
important among both large and small insects than previously ap-
preciated (5, 6). Long-distance dispersal (i.e., the noncyclic move-
ment from one area to another) is even harder to observe and study
in small insects, because the events are not generally predictable,
and the animals are far too small to be captured on radar or out-
fitted with tracking devices. The dispersal of small insects across a
landscape has often been modeled as stochastic processes governed
by diffusion and advection (7), processes that may underestimate
the ability of the animals to actively maintain constant trajecto-
ries over large spatial scales. Understanding long-distance migra-
tion and dispersal is quite important, because these phenomena are
responsible for biomass relocation on both local and global scales
(8, 9). Furthermore, as insect population densities decline due to
environmental degradation and climate change (10–12), under-
standing the dispersal capacity of insects and the behavioral algorithms

that underlie them will be crucial in predicting the ecological
impact of population decline.
Although not generally renowned for its capability to disperse

over long distances, a series of release-and-recapture experi-
ments over 40 y ago suggest that the fruit fly, Drosophila mela-
nogaster, may be capable of movements on the order of 15 km in
a single night, a distance equivalent to 6 million body lengths (13,
14). These experiments were conducted by releasing tens of
thousands of fluorescently labeled flies in the evening and then
censusing the contents of traps baited with yeast and banana placed
at distant oases the next morning. Although these pioneering
studies suggested that the dispersal capacity ofDrosophila was much
greater than previously estimated, they left open several critical
questions. First, it was not clear whether individual flies dispersed in
random directions or whether the population movement was biased
by external conditions, such as the wind, geographical features, or
celestial cues. Second, because the precise transit times of the flies
were not known, it was impossible to estimate the actual ground-
speeds used by the animals as they dispersed. To provide more
clarity to these and other questions related to long-distance dis-
persal, we conducted a series of release-and-recapture experiments
in the Mojave Desert. We equipped circular arrays of chemically
baited traps with simple machine vision systems that captured the
arrival times of flies as they landed and repeated the experiments
under a variety of ambient wind conditions. The results provide key
insight into the behavioral algorithms used by Drosophila while
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dispersing in the wild and serve as the basis for a general agent-
based model of wind-assisted dispersal in insects.

Results
To examine the long-distance flight behavior of Drosophila, we
performed a series of release-and-recapture experiments on a dry
lakebed, Coyote Lake, in the Mojave Desert (Fig. 1). We deployed a
circular ring of traps, each equipped with a camera and baited with a
fermenting solution of apple juice that actively produced CO2 and
ethanol, which attract flying flies (15). In most experiments (n = 5),
we positioned 10 traps at a radius of 1 km; in one preliminary
experiment, we placed the traps at a radius of 250 m. The mesh
surface of the traps contained an array of inwardly pointed funnels
that allowed entry, but limited egress, thus allowing us to count
and identify the flies at the end of each experiment. (Fig. 1 B and
C). An anemometer placed at the release site recorded instanta-
neous windspeed and direction. The number of flies released in
each experiment ranged from ∼30,000 to 200,000, consisting of
both males and females.
We suspected that a small subset of flies would adopt trajec-

tories leading directly to a trap (Fig. 1 D, i) but that the majority
of those recaptured would first encounter a trap’s odor plume and
then track it upwind to find the source (Fig. 1 D, ii). Thus, we
assume the trap count distributions to reflect two processes: 1) a
dispersal flight over open space before a fly detects an odor plume
and 2) a “cast-and-surge” upwind flight within the plume toward
the trap (16). Wind is expected to impact both these processes by
shaping the odor plumes and influencing the animals’ groundspeed.
Mean windspeed, which varied from release to release, influenced
the final trap count distributions in a systematic manner (Fig. 2 A
and B). Gentle winds resulted in a more uniform distribution of trap
counts around the ring (Fig. 2C), whereas the distributions were

skewed in a downwind direction in stronger winds. Despite this
downwind bias in trapping distribution, some flies managed to
arrive at crosswind and upwind traps in all but the strongest winds.
Collectively, these results indicate that despite their small size,
Drosophila are not simply advected by the wind as they disperse
but rather have some capacity to fly in upwind and crosswind
directions.
To determine if Drosophila actively regulate their groundspeed

during dispersal, we compared arrival dynamics at downwind and
upwind traps. This analysis was conducted on data collected from
an experiment using a circular array of traps positioned 250 m from
the release site, because the higher proportion (∼2%) of flies
recaptured at this shorter distance provided more arrival events.
We pooled the camera data collected from the traps into two
groups, representing the downwind and upwind sectors (Fig. 3,
black versus cyan data). Although the pooled data from upwind
and downwind traps differed with respect to the total number of
flies captured, the time courses were remarkably similar. We also
estimated the groundspeed of the first flies to arrive at each trap
(hereafter, “first arrivers”), as these were individuals that most
likely flew directly to the trap without an extended bout of upwind
plume tracking. To score these first arrivers, we manually anno-
tated the camera images to determine the first appearance of a
Drosophila-shaped insect. These findings suggest that flies utilized a
roughly similar groundspeed (0.94 ± 0.32 m · s−1, mean ± SD, n =
8) despite having taken widely different trajectories relative to the
prevailing wind of ∼1.5 m · s−1. This ability of flies to regulate
groundspeed is well known from wind tunnel experiments (17–19)
but had not been documented in the field.
By analyzing the data from experiments using traps set at 1 km,

we could derive better estimates of flies’ groundspeeds as well as
examine the influence of the wind more accurately. As with the

A

C D

B

Fig. 1. Experimental design. (A) The experiments were conducted at Coyote Lake (gray), a dry lakebed in the Mojave Desert. Contours are in meters. We
typically used 10 baited camera traps (orange) at a radius of 1 km from the release site (black star). North, N; magnetic north, MN. (B) Cartoon of trap,
dimensions not to scale. The top mesh surface contained an array of funnels projecting inward toward the bait. Only five funnels are drawn; the actual traps
had 60 funnels. The camera captures time-lapse images, monitoring the number of flies atop the trap (on-trap) and directly underneath the mesh top (in-trap,
visible). The camera cannot detect flies deeper inside (in-trap, hidden). (C) Trap deployed on lakebed. (D) Key assumptions guiding experimental design. Wind
(blue vector) advects a turbulent odor plume (orange) from each trap. Flies whose trajectory from the release site happens to intersect the plume near a trap
(i) are likely to be among the earliest arrivers, owing to their relatively direct path. Flies that intercept a plume downwind of its source (ii) will follow a longer
path before arriving at the trap (broken line). Many flies will not encounter a detectable plume (iii).
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250 m data, we manually annotated the camera images for the ar-
rival of the first Drosophila-sized insect. Thirty different traps from
the five experiments shown in Fig. 2 were amenable to this analysis.
The camera data from nine of these 30 traps provided a sufficiently
high signal-to-noise ratio that we could compare the manually an-
notated arrival times with an automated analysis, and the corre-
spondence was reasonably good (SI Appendix, Fig. S1).

Using the arrival times, we estimated the average groundspeed
along the trajectory from release site to trap, gtraj. From ane-
mometer data, we determined the average headwind or tailwind
that these first arrivers would have experienced during their flights,
wtraj (Fig. 4A). Plotting gtraj against wtraj indicates the influence of
the wind conditions (Fig. 4B). If the flies were simply advected by
the wind, all the data should lie on a line running through the origin,
with a slope of one. If the flies compensated groundspeed perfectly,
then the data should fall about a horizontal line representing the
average preferred groundspeed value. The distribution of field data
suggests an intermediate behavior; flies exhibit some ability to ac-
tively regulate groundspeed at low windspeeds but tend to move
with the wind as windspeed increases (Fig. 4C). Two data points
showed unusually large values for groundspeed, and we suspect that
these outliers were due to misidentification of some local fly-sized
insects in our annotations. All subsequent analyses were performed
on both the complete 30-point data set and after excluding these
two outliers, but the exclusion did not alter any qualitative conclu-
sions of our study. Fig. 4C also plots the comparable data collected
from our release with traps set at 250 m. The overlapping distri-
bution of data suggests that the flies executed the same preferred
ground speed whether measured over 1 km or 250 m and that the
interaction with the wind was governed by the same phenomena.
The cluster of groundspeed values measured when wtraj was

near zero provides a rough estimate of the preferred groundspeed
that flies use in the absence of any wind. This value, ∼1 m · s−1, is
much higher than measurements of Drosophila flight velocities
made in indoor wind tunnels (18, 20) but consistent with values
made for flies flying in greenhouses (21). Obviously, any first ar-
rivers that lingered at the release site, flew in a zig-zag manner, or
had to work upwind long distances within the odor plume to reach
the trap would have to have flown even faster to arrive at the
recorded time (Fig. 4A). The high value for estimated ground-
speed suggests that the flies—the first arrivers at least—must
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Fig. 2. Influence of wind on circular distribution of trapped flies. (A) Data
from traps positioned 1 km away from the release site. Each row depicts the
results of a different release. The area of each black circle indicates the
number of flies caught in that trap by the end of each experiment. The five
experiments are ordered according to the vector-averaged windspeed over
the first 20 min following release. Recapture percentages, calculated using
estimates of release populations, are indicated at the bottom left of each
panel. (B) Windspeed and direction during the releases. Data were vector
averaged in 2 min bins. Arrow lengths are fixed and point downwind; the
position of each arrow’s base along the ordinate indicates vector-averaged
windspeed. We recorded wind data continuously, barring one brief ane-
mometer failure shown in first row. (C) Circular variance (closed circles) and
the von Mises parameter κ (open circles) are plotted as a function of vector-
averaged windspeed for the five experiments.
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Fig. 3. In moderate winds, Drosophila regulate groundspeed. (A) During
this experiment, traps were positioned at a 250 m radius from the release
site. The vector-averaged windspeed was 1.5 m s−1, almost due east (gray
arrow). We define four traps as upwind (cyan circles) and four as downwind
(black circles). The number of flies imaged on the trap surface (black),
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scale). (B) From the same experiment, the number of flies visible within the
upwind and downwind traps.
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have flown in rather straight trajectories between the release site
and traps. If they had executed highly meandering paths, they
could not have reached the traps at the recorded times using
flight speeds that are biomechanically feasible.
Thus far, our results suggest that flies fan out in different di-

rections when released, with at least some flies maintaining a roughly
straight trajectory. Two basic mechanisms might explain how they
maintain a straight path as they disperse. In the first, each fly chooses
at random a constant heading (i.e., body orientation) relative to
a celestial cue (22, 23). In the second, flies somehow actively maintain
a constant trajectory (i.e., a straight path over the ground), perhaps by
orienting to a distant visual landmark (24). These two hypotheses are
distinct because a flying animal can move such that its longitu-
dinal body axis (heading) is not aligned with its groundspeed vector
(trajectory). Thus, an animal might maintain a constant heading while
its trajectory varies or maintain a constant trajectory while its heading
varies. The constant trajectory strategy has been observed in bum-
blebees during their nest-bound flights (25), and partial compensation
has been observed in migratory noctuid moths (6). The constant
heading hypothesis is consistent with radar observations of hoverflies’
autumn migrations (26) and laboratory experiments showing that
tethered flies will maintain a fixed, but arbitrary, orientation relative
to patterns of polarized light (23, 27, 28) or the position of the
sun (22).
To account for the influence of the wind, we propose a simple

set of behavioral algorithms that collectively constitute an agent-
based model that could explain the key features of our field data

and is consistent with prior laboratory observations (Fig. 5,
Model I). In our model, each fly maintains a constant heading
and regulates groundspeed, but the groundspeed regulator, pre-
sumably mediated by vision (29), only operates on the velocity
component oriented along the body axis. In other words, flies do
not regulate sideslip but rather allow themselves to be advected
sideways. Note, our analysis is based on measurements of the first
arrivers—that we assume were lucky to choose a heading that
carried them almost directly to a trap—and makes no attempt to
model the complex phenomena associated with plume tracking.
We developed a set of four agent-based models that all incorpo-
rated unregulated sideslip, but with different variations, thus cre-
ating a 2 × 2 matrix of two binary assumptions: 1) fixed random
heading versus fixed random trajectory and 2) regulated longi-
tudinal groundspeed versus unregulated groundspeed (Fig. 5).
Fig. 6 A–C shows how three example flies, differing only in their
chosen heading angle, would behave according to Model I (fixed
heading with regulated groundspeed, Fig. 5) and how these would
relate to the values of wtraj and gtraj available from field mea-
surements (Fig. 4B). The illustrations in Fig. 6 A–C are equivalent
to three simulations of Model I; running this simulation over the
measured range of windspeeds and random directions generates a
full set of predictions. The contours of the simulations are con-
strained by just three free parameters: the minimum (airmin) and
maximum (airmax) airspeed achievable by the flies and the pre-
ferred groundspeed (gpref) (Fig. 6D), values of which were chosen
from measurements of Drosophila flying in a brightly lit green-
house (21). Fig. 6D shows the output of Model I overlaid with the
field data. The other three models implemented the alternate
pairs of assumptions: Model II, unregulated groundspeed with
fixed heading; Model III, regulated groundspeed with fixed tra-
jectory; and Model IV, unregulated groundspeed with fixed
trajectory.
To quantitatively compare their performance, we calculated

the average pair-wise log likelihood ratio between Model I and
each of the alternate models, determined using 40,000 bootstrap
iterations (Fig. 6 E–H). The resultant distributions of log likeli-
hood ratios indicate that Models I and III—both of which invoke
groundspeed regulation—predict our field data equally well, in
contrast to Models II and IV, which lack groundspeed regulation.
To determine whether these conclusions were robust, we per-
formed a sensitivity analysis across a wide range of values for each
of the free parameters (SI Appendix, Figs. S2 and S3). For Models
I and III, having three free parameters, we ran 864 simulations; for
Models II and IV, with one free parameter, we ran 10 simulations.
From this, we determined the parameter set for each model that
best fit the field data. We then compared the individually opti-
mized models, using the pair-wise log likelihood ratio described
above (Fig. 6). As before, we found that the two models invoking
groundspeed regulation better explained the field data than the
models lacking this feature (SI Appendix, Fig. S4). The optimized
parameter values were quite similar to the ones we had chosen a
priori (Model I: airmax = 2.0 m · s−1, airmin = −0.5 m · s−1, gpref =
1.25 m · s−1; Model III: airmax = 2.0 m · s−1, airmin = −0.2 m · s−1,
gpref = 1.5 m · s−1). Collectively, our results suggest that a relatively
simple behavioral algorithm involving either fixed random heading
or trajectory, regulated groundspeed, and unregulated sideslip can
account for the salient features of dispersal behavior under a
range of different wind conditions.
To compare our results with more traditional, analytic models

of insect dispersal (7), we also simulated the expected distribu-
tion of gtraj and wtraj of flies arriving at a ring of traps if governed
by the advection–diffusion equation. However, prior to deter-
mining a diffusion coefficient that best explains our results by
brute force (Fig. 7), we can provide a rough estimate by noting
that the rms displacement, R, of a particle moving by diffusion in
the absence of advection is given by R  =  

̅̅̅̅̅̅̅̅̅̅
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diffusion constant and T is the time taken to reach R. We can
rearrange this expression as R=T   =   4D=R and estimate R=T (which
has units of velocity) as the flies’ preferred groundspeed at zero
windspeed (∼1 m · s−1, Fig. 4C). This calculation yields a diffusion
coefficient of ∼250 m2 · s−1 for the 1 km trap data but a value of
∼62 m2 · s−1 for the 250 m trap data. This simple analysis suggests
that data collected at 250 m and 1 km cannot be described by a single
diffusion coefficient. To be governed by the same diffusivity, the flies
arriving at the 250 m traps would have had to have flown approxi-
mately four times faster, or the flies arriving at the 1 km traps would
have had to have flown ∼0.25 times slower. What we instead ob-
served is that flies used the same preferred groundspeed independent
of the spatial scale of the experiment (Fig. 4C).
Our intuition based on this simple estimate of diffusivity was

supported by a rigorous simulation of the advection–diffusion
equation, in which the advection term was chosen from our field
measurements (as in our agent-based simulations), and we de-
termined the diffusion coefficient that optimized the fit between
field data and model predictions. We first solved the advection–
diffusion equation on a circular grid with an absorbing outer
boundary but then transformed the data into probability functions
of wtraj and gtraj, as in our agent-based models, which we could
then directly compare to our field data (SI Appendix). The solu-
tions that yielded the lowest log Bayes factors are shown in Fig. 7,
for both the 250 m and 1 km trap data. The diffusion coefficients
determined in this fashion (70 m2 · s−1 for the 250 m data and
300 m2 · s−1 for 1 km data) were remarkably similar to the values
predicted by our simple algebraic estimate described above and
underscore the fact that a single diffusion coefficient does not well
explain the data collected at the two different spatial scales, simply
because the first arrivers were traveling at the same speed in the
two cases. Our field data are thus not well approximated by a

simple diffusion–advection model and are more consistent with
the assumptions of our agent-based models.
In addition to evaluating our models with respect to trap–

arrival dynamics, we also tested their ability to predict the overall
angular distribution of trap counts with respect to the wind (Fig. 2C).
Our simulations provide angles of each fly’s trajectory, so we exam-
ined the circular variance of these as a function of windspeed for each
of the four agent-based models plus that of the advection–diffusion
model. All five models show a narrowing of the population trajec-
tories as wind increases (SI Appendix, Fig. S5), qualitatively consistent
with our field data. However, we made no attempt to model the
process of plume tracking, which we expect to strongly affect final
trap counts in the field.
Although the simulated flies in our agent-based models choose

an initial heading at random, they do not incorporate any sub-
sequent stochastic changes in heading as is often used to model
insect dispersal (30). To explore the influence of stochastic heading
changes, we performed an additional set of simulations in which
flies followed the rules of ground speed regulation and unregulated
sideslip, but they also changed heading randomly according to
prescribed statistics. To encompass a broad range of stochastic
behavior, we varied the statistics of heading changes in two in-
dependent ways: (1) we modeled the distributions of run lengths
with power law statistics (31) with μ values of 1, 1.5, and 2 and run
length intervals ranging from 1 s to 1,000 s and (2) chose each new
heading from a von Mises distribution with κ values (inverse of
circular variance) of 500, 10, 1, and 0.1. Thus, these simulations
constituted a 3-by-4 matrix of stochastic variations on Model I (SI
Appendix, Fig. S6). Note that the bottom row of simulations for
which κ = 500 converge, as expected, on our original agent-based
Model I (Fig. 6E), because the circular variance is so low that the
flies choose the same initial heading each time they change direc-
tion, thereby continuing in a straight line. The effect of changing the
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Fig. 5. Four behavioral models of wind-assisted dispersal. Cartoons depict how a fly’s heading, trajectory, longitudinal groundspeed, and airspeed relate to
the wind in each of four behavioral models. These models differ in azimuthal orientation strategies (rows) and in the presence or absence of groundspeed
regulation (columns). In Model I, each fly maintains a fixed body angle relative to an external azimuthal reference (e.g., sun) and adjusts its airspeed, within
limits, to achieve a preferred longitudinal groundspeed. The fly’s longitudinal airspeed (brown) sums with the wind (blue), generating the fly’s trajectory
(black). Projecting the trajectory vector onto the fly’s body axis gives the fly’s longitudinal groundspeed, which the fly actively regulates. In Model II, each fly
maintains a fixed heading as in the previous model but does not regulate longitudinal groundspeed. In Model III, each fly regulates longitudinal groundspeed
and maintains a constant trajectory relative to some external azimuthal reference (e.g., mountain). In Model IV, each fly has unregulated groundspeed and a
fixed trajectory.
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power law slope, μ, is intuitive in that a bias toward short run
times (μ = 2) augments the influence of advection, whereas bias
toward very long run times (μ = 1) allows many simulated flies to
make headway in the upwind direction (i.e., higher probability
density for wtraj < 0), again converging on the assumptions of our
original model. To compare the performance of the models with
added stochasticity to our original, we again calculated the average
pair-wise log likelihood ratio between Model I (Fig. 6E) and each
of the alternative models (SI Appendix, Fig. S6, Insets). The results

indicate that the introduction of stochastic turns can slightly im-
prove the correspondence between our model and the field data
provided that run lengths are very long (i.e., μ = 1). The slight
improvement in model fit with μ = 1 is likely due to a downward
shift in the probability of gtraj values that is most apparent at low κ
values. This makes sense intuitively, because even infrequent
changes in direction will lower the net groundspeed of some flies
measured when they reach the simulated trap location. This effect
might explain why we detected approximately five first arrivers in

A

B

C

D

E F

G H

Fig. 6. Field data support dispersal models integrating groundspeed regulation with either fixed heading or trajectory. (A–C) How Model I might generate
trajectories i through iii depicted in Fig. 4A. (A) Because fly i holds its heading nearly due north, a large component of the wind (wpar) constitutes a headwind.
By exerting maximum airspeed against wpar, the fly achieves a modest longitudinal groundspeed (gach). The vector sum of gach and wperp yields the fly’s
groundspeed (gtraj), the magnitude of which is one of the field-measurable parameters. (B) Fly ii orients its body ∼35° from north; applying the maximum
airspeed along this heading results in a trajectory due east. The net trajectory is entirely perpendicular to the wind, yieldingwtraj = 0. (C) Fly iii orients its body
∼40° from south; in this case, wpar is infinitesimally small, and the fly can achieve its preferred groundspeed (gpref). Summed with wperp, this yields a gtraj vector
pointing due south and a wtraj vector of the same magnitude as the wind. (D) The relationship between wtraj and gtraj, simulated over a range of windspeeds
and wind directions, with gpref = 1.0 m · s−1, airmin = −0.2 m · s−1, and airmax = 1.8 m · s−1. The three yellow points indicate the approximate values from the
example simulated flies i, ii, and iii schematized in A, B, and C above, assuming a windspeed of 1.3 m · s−1. The 99% contour from all simulations is filled in
green. Boundaries of this contour are constrained by model parameters airmax (brown), airmin (purple), and gpref (teal). Black points indicate field mea-
surements. (E–H) The four behavioral models, simulated over a wide range of wind conditions, generate distinct relationships between the two field-
measurable parameters. Grayscale shading shows each models’ normalized probability density function (PDF). Field measurements are plotted over each
model’s PDF; likelihood values at each point were compared pairwise between models. In an alternate analysis, two possible outliers (overlaid with crosses)
were excluded. (E) PDF generated by Model I. (F) PDF generated by Model II. (Inset) Bootstrapping the field data over 40,000 iterations generated a dis-
tribution of log likelihood ratios comparing Models I and II. Positive values denote iterations in which Model I predicted the resampled data better than did
Model II. The mean of this distribution was 499 (black) or, excluding outliers, 282 (gray). (G) PDF of model III. (Inset) Comparison of Models I and III. Dis-
tribution mean is −20 and, excluding outliers, 61. (H) PDF from Model IV. (Inset) comparison of Models I and IV. Distribution mean is 504 and, excluding
outliers, 288.
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our field data that flew at a much lower-than-expected ground-
speed than predicted by our original model. Thus, within limits,
the introduction of stochastic changes in direction can improve the
predictions of our agent-based model, but the results nevertheless
support the hypothesis that Drosophila are capable of maintaining
relatively straight headings over kilometer-scale distances.

Discussion
Our results provide evidence that an agent-based model in which
flies maintain a constant heading and preferred longitudinal ground
speed while not regulating sideslip can explain salient features of
dispersal in an open landscape. Agent-based models in which each
animal follows a finite set of rules are not necessarily incompatible
with statistical models such as the advection–diffusion equation, in
which animals move according to a random Brownian process.
However, in this particular case, the behavior of the first arriver flies
at our field traps was not consistent with Brownian motion because
flies appear to maintain a preferred groundspeed that is scale in-
dependent. While not negating the utility of advection–diffusion
models in describing insect motion under many conditions—in a
more spatially complicated, sensory landscape, for example—our
results suggest that when released in an open area, Drosophila ex-
ecute a set of behavioral algorithms that appear largely optimized
for long-distance dispersal rather than local search. Further, our
experiments confirm the earlier results of Coyne and coworkers
(13), suggesting that Drosophila can disperse over many kilometers
in a single flight.
Our results indicate that dispersing Drosophila actively regu-

late their longitudinal groundspeed to a value of ∼1 m · s−1

(3.6 km · hr−1). Fully fed, tethered flies can fly for up to 3 h (24),
a value that is consistent with measurements of metabolic rate
and aerodynamic power requirements (32). This suggests that a
single fly could cover ∼12 km without the need for refueling, a

distance of about 4.8 million body lengths. Even if this value rep-
resents an extreme performance estimate, it nevertheless demon-
strates a surprising dispersal capacity for a small, 1 mg insect. At
the higher groundspeeds we measured under windy conditions
(∼2.5 m · sec−1), the dispersal distance estimate for a single flight
increases to ∼30 km. Flies could almost certainly disperse much
further in an uncontrolled fashion in more extreme conditions, es-
pecially if they were carried well above the boundary layer into
higher elevations where they catch prevailing winds (33). Presum-
ably, it is just such uncontrolled events that resulted in the coloni-
zation of isolated oceanic islands (34).
Many animals localize food by moving upwind within advected

odor plumes (16), a behavior termed odor-mediated anemotaxis.
This behavior typically involves an iterative sequence of upwind
surges when odor is detected, interspersed with crosswind casts
when the odor is lost. Although we could not directly observe plume
tracking in our field experiments, Drosophila readily exhibit such
behavior in wind tunnels (35, 36). Whereas the utility of the
cast-and-surge algorithm is obvious once an animal encounters a
plume, the best strategy before it detects an odor is less clear and
may depend on wind conditions (37, 38) and—just as importantly—
on the natural history of each particular species. Some insects, such as
the cabbage root fly, fly upwind when experiencing an odorless
background flow (39). This might seem logical, simply because if
an animal detects an odor, its source must be upwind. On the
other hand, by flying upwind, an animal limits itself to odor targets
that reside in a narrow sector directly ahead. Tsetse flies fly
downwind prior to detecting an odor plume (40), possibly because
this allows them to cover a greater distance while searching for
hosts. Another strategy, observed in both desert ants (41) and al-
batross (42), is to deliberately move crosswind so as to intercept the
largest number of upwind plumes. Another strategy, found in
Agrotis moths, is to search upstream if they detect a female pher-
omone but search crosswind or downwind if they do not (43). These
same experiments suggest that search patterns may shift to a more
random strategy if a target odor is not detected within some spec-
ified time. In our experiments, we observed that Drosophila fan out
in all directions at low windspeeds, similar to the behavior reported
in gypsy moths (44), while at higher speeds, the flies were biased
downwind. The behavior we observed, and the model we propose,
may be viewed as a compromise between the need to find an at-
tractive odor plume and the goal of using the wind to increase
dispersal distance. By not regulating sideslip, the flies allow them-
selves to be directed downwind, but by regulating longitudinal
groundspeed, they maintain some crosswind component that might
increase the probability of encountering an upwind plume.
Although we captured flies at odor-baited traps, there is some

possibility that the flies arrived without having tracked its asso-
ciated plume upwind. If 100,000 flies fanned out evenly in all
directions from the release site, they would reach the perimeter
of the trap radius at a linear density of ∼16 flies per meter. If we
liberally assume that a fly might be able to see a trap from a distance
of 10 m, then it is possible that ∼320 flies would pass near enough to
a trap that they might land on it without needing to follow the odor
plume. Thus, we may have only trapped flies that happened to
choose trajectories that carried them near one of the traps. There
are several arguments against this interpretation. First, our coarse
estimates for how many flies came within the visual detection range
of the traps are almost certainly an overestimate as it assumes that
all the flies flew within 1 to 2 m of the ground where they could
encounter the trap. Drosophila spp. have been observed at high
density in 200 m–high aerial traps (2), and it is possible that many of
the flies in our experiments rose well above the ground after release.
Second, laboratory experiments indicate that flying flies are not
attracted to land on visual objects until after they have encountered
an attractive odor (36); it thus seems reasonable to assume that the
flies would have made some contact with the plume before landing
on the trap.
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Fig. 7. Predictions of release-and-recapture data using advection–diffusion
model. Each panel plots normalized probability density functions for values
of wtraj and gtraj predicted from simulations of the advection–diffusion
equation over a circular domain representing the release site and circular
trap array (SI Appendix). (A) Simulation results (gray density) compared to
field data (points) for the release experiment performed with traps at 250 m
(Fig. 3). The results shown are based on the measured wind conditions after
applying a Gaussian kernel. The value of the diffusion coefficient that
resulted in the best fit with the field data was 70 m2 · s−1. The inset shows the
metric for the fit (log Bayes factor) as a function of different diffusion co-
efficients. The model is particularly bad at predicting the data generated by
flies flying upwind (wtraj < 0) at their preferred groundspeed (wtraj ∼1). (B) As
in A but for the complete set of trap data collected at 1 km. As in our agent-
based simulations (Fig. 6 E–H), these simulations used a composite of
windspeeds measured during all five experiments. In the 1 km case, the data
were best fit by a diffusion coefficient of 300 m2 · s−1.
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Of the agent-based models we tested, the two that combined
longitudinal groundspeed regulation with either fixed heading or
fixed trajectory (Models I and III) performed best in predicting
our field data. Of these two, we believe that the fixed heading
model is the most biologically plausible as this is consistent with
laboratory experiments showing that flies adopt arbitrary head-
ings relative to patterns of skylight polarization and sun position.
Tethered Drosophila do steer toward large conspicuous visual
objects (30)—a reflex called stripe fixation. However, although
the lakebed is surrounded by some ridges (Fig. 1A), none contain
vertical features that seem prominent enough to elicit a strong
fixation response from the release site. Further, a fixation response
to one or two geological features could not easily explain how flies
fan out in many directions. As argued elsewhere, stripe fixation is
better interpreted as a transient attraction toward nearby objects
rather than a long-distance orientation behavior (45).
Dispersing Drosophila use celestial cues not as a compass to go

in a preferred direction but rather simply as a means of holding
an arbitrary orientation (i.e., menotaxis). In this regard, flies’ use
of the sky compass system is similar to dung beetles, which
maintain a straight trajectory away from the dung pile (46), but
not like monarch butterflies, which use the sun compass to fly in
a particular direction (47). However, as has been pointed out by
Honkanen et al. (48), the alteration in central complex circuitry
that would be required to transform compass-based random
dispersal behavior into seasonal migration might be quite subtle,
and the two behaviors are perhaps better viewed as points on a
continuum.
We deliberately chose to conduct our experiments on a flat,

featureless, dry lakebed to simplify the external factors that might
influence dispersal behavior; however, we acknowledge that our
experiments were artificial in a number of ways. First, D. mela-
nogaster is a cosmopolitan species that originated in Africa (49).
Thus, we can infer little regarding the species-specific behavior of
the flies as it relates to their ancestral habitat. Instead, our ob-
servations more likely shed light on deeply rooted behavioral
algorithms that are shared by many insects and not the result of
recent evolutionary processes (45). Second, our experiments forced
a rapid, mass exodus, whereas dispersal within the normal life his-
tory of flies is more likely a choice influenced by a complex inter-
action of internal and external factors. Even in species in which
dispersal is not associated with distinct morphological changes (50),
it may be anticipated by physiological modifications (51). Further,
laboratory populations subjected to strong selection for dispersal
ability (as measured in walking assays) exhibit heritable changes in
behavior (52); thus, it is possible that distinct populations of flies
might respond differently in a mass release depending upon their
genetic composition. However, upon emergence, we did maintain
the flies ad libitum on a protein-deprived diet. This was a deliberate
attempt to proffer them an ample energy source while also pro-
viding a strong motivation to search elsewhere for protein-rich food
(53). The fact that the vast majority of flies left the containers upon
release gives us some confidence that the animals were not inhibited
from initiating long-distance flight by either physiological or genetic
factors and that our feeding regime may have had the desired effect.
In summary, we propose a model of wind-assisted dispersal in

which each insect chooses and maintains a random heading and

regulates its longitudinal groundspeed but tolerates wind-
induced sideslip. While undoubtedly simplistic, the advantage
of our model is that it can explain dispersal behavior under a
variety of wind conditions without requiring that any individual
animal change its behavioral set point as a function of wind-
speed. It thus represents a biologically feasible “rule-of-thumb”
that yields a desired behavioral outcome without requiring so-
phisticated neural computations. Although derived from mea-
surements on Drosophila, we suggest that the model might
explain the dispersal behavior of many flying insects with roughly
similar natural histories.

Materials and Methods
Fly Release and Recapture. We performed a series of release-and-recapture
experiments using a population of laboratory-reared D. melanogaster on a dry
lakebed (Coyote Lake) in the Mojave Desert. We deployed a circular ring of
traps, each equipped with a downward-facing camera (Raspberry Pi) and baited
with fermenting apple juice. In five experiments, we positioned 10 traps at a
radius of 1 km; in one preliminary experiment, we placed the traps at a radius
of 250 m. The mesh surface of the traps contained an array of inwardly pointed
funnels, allowing us to count and identify the flies at the end of each experi-
ment. (Fig. 1 B and C). An anemometer (Met One, direction sensor 020C, speed
sensor 010C) placed at the release site recorded the time course of windspeed
and direction in each experiment. The number of flies released in each exper-
iment ranged from ∼30,000 to 200,000. In addition to counting the flies that
had arrived at each trap, we also scored the arrival times of the first flies to land
on each trap via manual inspection of time-stamped camera images and in
some cases using custom-written machine vision software (54). For details, see
the article text and SI Appendix.

Agent-Based Models. To help interpret our results, we developed agent-based
models in which each fly maintains a random constant azimuthal orientation
but is advected sideways by the wind. We developed four different models
that all incorporated unregulated sideslip but differed with respect to
whether the flies maintained a constant heading or constant trajectory and
whether they regulated longitudinal groundspeed or not. We simulated the
output of the models using ∼45,000 permutations in which each fly chose a
different heading or trajectory and was subjected to a wind magnitude
derived from a distribution based on our field measurements (54). For de-
tails, see the article text and SI Appendix.

Advection–Diffusion Model.We also simulated the expected distribution of gtraj
and wtraj for flies arriving at a ring of traps if governed by the advection–
diffusion equation. Using measured values for wind, we determined the dif-
fusion coefficient that optimized the fit between field data and model pre-
dictions. We first solved the advection–diffusion equation on a circular grid
with an absorbing outer boundary but then transformed the data into
probability functions of wtraj and gtraj, as in our agent-based models. The
advection–diffusion equation was solved using the FEniCS platform (https//
fenicsproject.org) (54). For details, see SI Appendix.

Data Availability. All data and analysis code used in this paper are available for
download at https://github.com/kateleitch/drosophila_wind_assisted_dispersal.
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